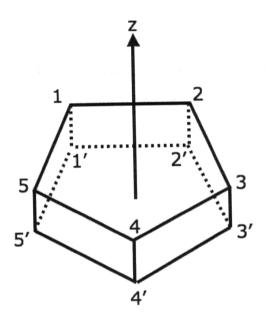
EXAM SYMMETRY IN PHYSICS

Wednesday, January 28, 2009, 9:00-12:00, room 18.-152

- Write your name and student number on the first page.
- Illegible writing will be graded as incorrect.
- Good luck!

Problem 1.

Consider the regular 3D pentagonal object in the Figure. The upper side (12345) is red, the lower side (1'2'3'4'5') is blue, and the sides are white.



- a. The symmetry group of this object we call G. Give the elements of G. Is G abelian?
- \boldsymbol{b} . Divide the elements of G in classes. How many irreducible representations (irreps) does G have? What are the dimensions of the irreps?
- ${m c}.$ Construct the character table of ${m G}.$

Suppose that the upper and lower side have the same color. Such an object has a different symmetry group that we call H.

- d. How many elements does H have, and how are they related to the elements of G?
- e. Construct the character table of H. Hint: The answer can be given independently from c, by representing the character table of G by a block.

Problem 2.

Consider an atom with one valence electron (we ignore spin). The energy levels in free space correspond to irreps of the rotation group SO(3). We apply a perturbation such that the symmetry is reduced to C_{4v} , the symmetry group of the square (rotations and reflections).

- a. Give the elements of C_{4v} and divide them into conjugacy classes.
- **b**. Derive the following character table, carefully explaining your reasoning:

C_{4v}	\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3	\mathcal{C}_4	\mathcal{C}_5
$D^{(1)}$		1	1	1	1
$D^{(2)}$	1	1	1	-1	-1
$D^{(3)}$	1	-1	1	-1	1
$D^{(4)}$	1	-1	1	1	-1
$D^{(5)}$	2	0	-2	0	0

c. For SO(3) the character of the conjugacy class labeled by the angle θ is

$$\chi^{(\ell)}(\theta) = \frac{\sin[(2\ell+1)\theta/2]}{\sin[\theta/2]} .$$

Derive this formula.

- d. Calculate how the 7-fold degenerate $\ell=3$ state is split by the C_{4v} perturbation. Give the new degeneracies. Draw a picture of the splitting.
- e. We next apply a further perturbation that reduces the symmetry to C_{2v} , the symmetry group of the rectangle. Do you expect a further splitting? What are the remaining degeneracies?

Problem 3.

The Euclidean group E(2) contains all linear transformations in 2D Euclidean space that leave the length of all vectors invariant:

$$x'^1 = x^1 \cos \theta - x^2 \sin \theta + b^1,$$

$$x'^2 = x^1 \sin \theta + x^2 \cos \theta + b^2.$$

The elements of E(2) are written as $g(\boldsymbol{b}, \theta)$.

- a. Give the multiplication law, the unit element, and the inverse. How many parameters does E(2) have?
- **b**. What are the subgroups of E(2)?
- c. Show that a possible representation of the group is given by the three-dimensional matrix representation

$$g(\boldsymbol{b}, \theta) = \begin{pmatrix} \cos \theta & -\sin \theta & b^1 \\ \sin \theta & \cos \theta & b^2 \\ 0 & 0 & 1 \end{pmatrix}$$

acting on the vector $(x^1, x^2, 1)$.

- d. Consider the Lie algebra of E(2). Derive the generators of the group.
- e. Give the commutation relations and determine the structure constants of E(2).